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ABSTRACT 

 
The objective of this paper is to study the elastic buckling characteristics of an axially loaded 

cylindrical shell of a three lobed cross section of variable thickness subjected to combined 
compression and bending loads based on the thin-shell theory and using the computational 
transfer matrix method. Modal displacements of the shell can be described by trigonometric 
functions and Fourier’s approach is used to separate the variables. The governing equations of 
the shell are reduced to eight first-order differential equations with variable coefficients in the 
circumferential coordinate, and by using the transfer matrix of the shell, these equations can be 
written in a matrix differential equation. The transfer matrix is derived from the non-linear 
differential equations of the cylindrical shells by introducing the trigonometric function in the 

longitudinal direction and applying a numerical integration in the circumferential direction. The 
computational transfer matrix method is used to get the critical buckling loads and the buckling 
deformations for symmetrical and antisymmetrical buckling-modes. Computed results indicate 
the sensitivity of the critical loads and corresponding buckling modes to the thickness variation 
of cross-section and the radius variation at lobed corners of the shell. 
 

KEYWORDS: Buckling characteristic, Stability, Transfer matrix method, Non-circular 
cylindrical shell, Non-uniform axial loads, and Variable thickness. 
 

1. INTRODUCTION 
 

The use of cylindrical shells which have non-circular profiles is common in many fields, such as 
aerospace, mechanical, civil and marine engineering structures. The displacements buckling 

modes of thin elastic shells essentially depend on some determining functions such as the radius 
of the curvature of the neutral surface, the shell thickness, the shape of the shell edges, etc. In 
simple cases when these functions are constant, the buckling modes occupy the entire shell 
surface. If the determining functions vary from point to point of the neutral surface then 
localization of the displacements buckling modes lies near the weakest lines on the shell surface, 
and this kind of problems is too difficult because the radius of its curvature varies with the 
circumferential coordinate, closed-form or analytic solutions cannot be obtained, in general, for 
this class of shells, numerical or approximate techniques are necessary for their analysis. 
Buckling has become more of a problem in recent years since the use of high strength material 

requires less material for load support-structures and components have become generally more 
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slender and buckle-prone. Many researchers have considerable interest in the study of stability 
problems of circular cylindrical shells under uniform axial loads with constant thickness and 
numerous investigations have been devoted to this. e.g[1-9]. Other related references may be 
found in the well-known work of Love [10] in 1944, Flügge [11] in 1973 and Tovstik [12] in 
1995. In contrast, the buckling behaviour under applied non-uniform axial loads has received 
much less attention, but some of treatments are found in [13-17], and Song [18] in 2002 provided 
a review of research and trends in the area of stability of un-stiffened circular cylindrical shells 
under non-uniform axial loads. Recently, with the advent of the high speed digital computer, the 
buckling study of shells directed to ones with complex geometry, such as the variability of radius 

of curvature and thickness. Using the modified Donell-type stability equations of cylindrical 
shells with applying Galerkin’s method, the stability of cylindrical shells with variable thickness 
under dynamic external pressure is studied by Abdullah and Erdem [19] in 2002. Eliseeva et al. 
and Filippov et al. [20-21] in 2003 and 2005 presented the vibration and buckling of cylindrical 
shells of variable thickness with slanted and curvelinear edges, respectively, using the asymptotic 
and finite element methods. As analytical solutions for axisymmetric transverse vibration of 
cylindrical shells with thickness varying in power form due to forces acting in the transverse 
direction are derived for the first time by Duan and Koh [22] in 2008. Sambandam et al.[23] in 

2003 studied the buckling characteristics of cross-ply elliptical cylindrical shells under uniform 
axial loads based on the higher-order theory and found that an increase in the value of radius to 
thickness ratio the critical load decreases. Using the generalized beam theory, the influence of 
member length on the critical loads of elliptical cylindrical shells under uniform compression is 
studied by Silvestre [24] in 2008.  By the use of the transfer matrix method and based on the 
theories of thin-shell and Flügge’s shell, Khalifa [25-27] in 2010 and 2011 studied the vibration 
and buckling behaviour of non-circular cylindrical shells. A treatise on the use of the transfer 
matrix approach for mechanical science problems is presented by Tesar and Fillo [28] in 1988.  
However, the problem of stability of the shell-type structures treated here which are composed of 

circular cylindrical panels and flat plates with circumferential variable thickness under  non-
uniform loads does not appear to have been dealt with in the literature. The aim of this paper is to 
present the buckling behaviour of an isotropic cylindrical shell with a three lobed cross section of 
circumferentially varying thickness, subjected to non-uniformly compressive loads, using the 
transfer matrix method and modeled on the thin-shell theory. The proposed method is applied to 
symmetrical and antisymmetrial buckling-modes. The critical buckling loads and corresponding 
buckling deformations of the shell are presented. The influences of the thickness variation and 
radius variation on the buckling characteristics are examined. The results are cited in tabular and 

graphical forms. 
 

2. THEORY AND FORMULATION OF THE PROBLEM 
 

 It has been mentioned in introduction section that the problem structure is modeled 

by thin-shell theory. In order to have a better representation, the shell geometry and governing 
equations are modeled as separate parts. The formulation of these parts is presented below. 
 

2.1. GEOMETRICAL FORMULATION  
  
 We consider an isotropic, elastic, cylindrical shell of a three-lobed cross-section 

profile expressed by the equation )(θfar = , where r is the varied radius along the cross-section 

mid-line, a  is the reference radius of curvature, chosen to be the radius of a circle having the 

same circumference as the three-lobed profile, and )(θf  is a prescribed function of θ  and can be 

described as: 
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L1 and L2 are the axial and circumferential lengths of the middle surface of the shell, and the 
thickness H (θ) varying continuously in the circumferential direction. The cylindrical 

coordinates ),,( zsx are taken to define the position of a point on the middle surface of the 

shell, as shown in Figure (1.1) and Figure (1.2) shows the three-lobed cross-section profile of 
the middle surface, with the apothem denoted by A1, and the radius of curvature at the lobed 
corners by R1. While υ,u and w  are the deflection displacements of the middle surface of the 

shell in the longitudinal, circumferential and transverse directions, respectively. We suppose 

that the shell thickness H at any point along the circumference is small and depends on the 
coordinate θ  and takes the following form: 
 

                                         H(θ )= h0 )(θϕ                                                                                (2)  
 

where h0 is a small parameter, chosen to be the average thickness of the shell over the length L2. 
For the cylindrical shell which cross-section is obtained by the cutaway the circle of the radius r0 
from the circle of the radius R0 (see Figure (1.3) function )(θϕ  have the 

form: ),cos1(1)( θδθϕ −+=  whereδ  is the amplitude of thickness variation, δ = d /h0, and 

d  is the distance between the circles centers. In general case h0=H( 0=θ ) is the minimum value 

of )(θϕ  while hm= H( πθ = ) is the maximum value of )(θϕ , and in case of d = 0 the shell has 

constant thickness h0. The dependence of the shell thickness ratio η = hm/h0 on δ  has the 

form δη 21 += . 

 

2.2. GOVERNING EQUATIONS   
 

 For a general circular cylindrical shell subjected to a non-uniform circumferentially 
compressive load )(θp , the static equilibrium equations of forces, based on the Goldenveizer-

Novozhilov theory [29-30] in 1961 and 1964 can be shown to be of the forms:  
 

    

,0/,0,0

,0,0)(/

,0)(/,0)(

=−−=′−−=−+′

=−+′=′′−−+′

=′′−++′=′′−+′

•

••

••

RMNNMQSQMM

QMMwPRNQQ

PRQNNuPNN

sxsxxssxssssxs

xsxxssx

ssxssxx

θ

υθθ

                 (3) 

 

where sx NN , and sx QQ , are the normal and transverse shearing forces in the x and s  

directions, respectively, sxN and xsN are the in-plane shearing forces, sx MM , and sxxs MM , are 

the bending moment and the twisting moment, respectively, 
sS  is the equivalent ( Kelvin-

Kirchoff ) shearing force,  R is the radius of curvature of the middle surface,  x∂∂≡ /' , and 
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s∂∂≡• / . We assume that the shell is loaded along the circumferential coordinate by non-uniform 

axial loads )(θp  which vary withθ , where the compressive load does not reach its critical value 

at which the shell loses stability. Generally, the form of the load may be expressed as:      
 

                                            )()( 0 θθ gpp =                                                                              (4) 

 

where )(θg  is a given function of θ  and 0p  is a constant. We consider the shell is loaded by 

non-uniform loads, combined compression and bending loads, (per unit length) given by [13] 
in 1932 as:  
 

                          )cos21()( 0 θθ += pp ,    θθ cos21)( +=g                                                  (5) 

  

and the sketch depicting this load is given in Figure (1.4). The applied specific load in this form 

establishes two zones on the shell surface: one is the compressive zone, 1Q , for ( 3/20 πθ << ) 

where the buckling load factor is a maximum and the thickness is a minimum and the other is the 

tensile zone, 2Q ,for ( πθπ <<3/2 ) where the buckling load factor is a minimum and the 

thickness is a maximum, as shown in this figure. Note that 0)( pp =θ  in the case of applied 

compression loads. Hereby, we deduce the following ratio of critical loads:  
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C

C=µ                                                        (6) 

 

Cp  Is the lowest value of applied compressive loads and named by the critical load. 

The relations between strains and deflections for the cylindrical shells used here are taken from 
[31] in 1973 as follows: 
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where xε and sε  are the normal strains of the middle surface of the shell, xzxs γγ , and szγ are the 

shear strains, and the quantities sxsx kkk ,, and xsk representing the change of curvature and the 

twist of the middle surface, xψ is the bending slope, and sψ is the angular rotation. The 

components of force and moment resultants in terms of Eq. (7) are given as: 
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From Eqs. (3) to (8), with eliminating the variables xsxxsxsx MMNNQQ ,,,,,  and sxM  which 

are not differentiated with respect to s , the system of the partial differential equations for the 

state variables ssss NSMwu ,,,,,, ψυ and sxN of the shell are obtained as follows:    
 

 

.)()1(

/)(,)()1(/

,)1(2,)/(//

,/,//,)6/())1(/(2

2

2

2

ssx

sxsssss

ssssxss

ssssx

NuPuDN

NRSPNwPwKMRNS

KSMuRDRNKM

rwuRwDNRHNDu

′−′′+′′−=

′−−′′=′′+′′′−+′′−=

′′−−=′−−′+=

−=′−−=′−′+−=

•

••

••

•••

νθν

υθθνν

ψννψνψ

ψυνυυψν

        (9) 



International Journal of Mechanical Engineering Research and Development (IJMERD) ISSN 2248-
9347 (Print), ISSN 2248-9355 (Online) Volume 3, Number 1, Jan-March (2013) 

15 
 

 
 
The quantities D and K , respectively, are the extensional and flexural rigidities expressed in 
terms of the Young’s modulus E, Poisson’s ratioν  and the wall thickness H )(θ  as the form:  

D = EH/ )1( 2ν−  and K = EH
3
/12 )1( 2ν− , and on considering the variable thickness of the shell, 

using Eq. (1), they take the form: 
 

      D = ( Eh0 / )1( 2ν− ) )(θϕ = )(0 θϕD ,                                                                               (10) 

 

     K = ( E(h0)
3
/ )1( 2ν− ) )(3 θϕ = )(3

0 θϕK                                                                             (11) 
 

Where 0D  and 0K  are the reference extensional and flexural rigidities of the shell, chosen to be 

the averages on the middle surface of the shell over the length L2. 
 

For a simply supported shell, the solution of the system of Eqs (9) is sought as follows:  
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ,...2,1,/,cos)(,)(),(,),(

,sin)(,)(),(,),(

,cos)(,)(,)(),(,),(,),(

,sin)(,)(,)(,)(),(,),(,),(,),(

,sin)(),(,sin)(,)(),(),,(,cos)(),(

1 ===

=

=

=

===

mLmxsMsMsxMsxM

xsMsMsxMsxM

xsQsNsNsxQsxNsxN

xsSsQsNsNsxSsxQsxNsxN

xssxxsWsVsxwsxxsUsxu

sxxssxxs

sxsx

xsxxsxxssx

sssxsssx

ss

πββ

β

β

β

βψψβυβ

    (12) 

 

Where m  is the axial half wave number and the quantities .....,)(),( sVsU  are the state variables 

and undetermined functions of .s  

 

3. MATRIX FORM OF THE BASIC EQUATIONS 
 

 The differential equations as shown previously are modified to a suitable form and 
solved numerically. Hence, by substituting Eqs (12) into Eqs. (9), after appropriate algebraic 
operations and take relations (10) and (11) into account, the system of buckling equations of the 
shell can be written in non-linear ordinary differential equations referred to the variable s only are 

obtained, in the following matrix form: 
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By using the state vector of fundamental unknowns )(sZ , system (13) can be written as:          

                          { } { })()]([)()( sZsVsZ
ds

d
a =                                                                         (14) 
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For the non-circular cylindrical shell which cross-section profile is obtained by function 

( )(θfar = ), the hypotenuse ( ds ) of a right triangle whose sides are infinitesimal distances along 

the surface coordinates of the shell takes the form: 
 

222 )()()( θdrdrds += , then we have: θ
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Using Eq. (15), the system of buckling equations (14) takes the form:   
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f +=Ψ and the coefficients Matrix )]([ θV are given as: 
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81 lmgplmhV ππνϕ −−= ,                                     (17) 

)/(87 lmV πν−=  In terms of the following dimensionless shell parameters: 

Curvature parameter Ra /=ρ , buckling load factor )/( 0

2

0 Kapp = , aLl /1= , and  ahh /0= .  

The state vector { })(θZ of fundamental unknowns can be easily expressed as:  
 

                                                { } { })0()]([)( ZYZ θθ =                                                               (18) 

By using the transfer matrix )]([ θY of the shell, and the substitution of the expression into Eq. 

(16) yields:  

                                    
.][)]0([

,])([)]([)(])([)/(

IY

YVYdd

=

Ψ= θθθθθ
                                        (19) 

 

 The governing system of buckling (19) is too complicated to obtain any closed form 
solution, and this problem is highly favorable for solving by numerical methods. Hence, the 
matrix )]([ θY  is obtained by using numerical integration, by use of the Runge-kutta integration 

method of forth order, with the starting value ][)]0([ IY = (unit matrix) which is given by taking 

0=θ  in Eq. (18), and its solution depends only on the geometric and martial properties of the 

shell.  For a plane passing through the central axis in a shell with structural symmetry, 
symmetrical and antisymmetrical profiles can be obtained, and consequently, only one-half of the 
shell circumferences are considered with the boundary conditions at the ends taken to be the 
symmetric or antisymmetric type of buckling deformations.  
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Therefore, the boundary conditions for symmetrical and antisymmetrical bucking deformations 

are  0
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4. BUCKLING LOADS AND BUCKLING MODES   
   
    The substitution of Eqs (20) into Eq. (18) results the buckling equations: 
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 The matrices [ )(πY ] depend on the buckling load factor p and the circumferential angle 

θ. Equations (21) and (22) give a set of linear homogenous equations with unknown coefficients 
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ψ , respectively, at 0=θ . For the existence of a nontrivial 

solution of these coefficients, the determinant of the coefficient matrix should be vanished. The 
standard procedures cannot be employed for obtaining the eigenvalues of the load factor. The 
nontrivial solution is found by searching the values p which make the determinant zero by using 

Lagrange interpolation procedure. The critical buckling load of the shell will be the smallest 
member of this set of values. The buckling deformations (circumferential buckling displacements 

mode) at any point of the cross-section of the shell, for each axial half mode m are determined by 
calculating the eigenvectors corresponding to the eigenvalues p  by using Gaussian elimination 

procedure. 
 

5.  COMPUTED RESULTS AND DISCUSSION 
 

A computer program based on the analysis described herein has been developed to study the 
buckling characteristics of the shell under consideration. The critical buckling loads and the 

corresponding buckling deformations of the shell are calculated numerically, and some of the 
results shown next are for cases that have not as yet been considered in the literature. Our study is 
divided into two parts in which the Poisson’s ratio ν  takes the value 0.3. 
 

5.1. BUCKLING RESULTS 
 

Consider the buckling of a three-lobed cross-section cylindrical shell with circumferential 

variable thickness under non-uniform axial loads )(θp . The study of shell buckling is determined 

by finding the load factor p  which equals the eigenvalues of (Eqs. (21) and (22)) for each value 

of m, separately. To obtain the buckling loads (Bp = )p  we will search the set of all eigenvalues, 

and to obtain the critical buckling loads (Cp < )Bp , which corresponds to loss of stability of the 
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shell, we will search the lowest values of this set. The numerical results presented herein pertain 

to the buckling loads in the case of uniform and non-uniform loads for symmetric and 

antisymmetric type-modes. 

 

 The effect of variation in thickness on the buckling loads, Table 1 gives the fundamental 

buckling loads factor of  a three-lobed cross-section cylindrical shell with radius ratioζ =0.5 

versus the axial half wave number m  for the specific values of thickness ratioη , symmetric and 

antisymmetric type- modes . A-columns correspond to the applied combined compression and 

bending loads, while B-columns are the applied axial compression loads, only. 

  

 The results presented in this table show that the increase of the thickness ratio tends to 

increase the critical buckling load (bold number) for each value of m. These results confirm the 

fact that the effect of increasing the shell flexural rigidity becomes larger than that of increasing 

the shell mass when the thickness ratio increases. It is shown by this table that the values of 

fundamental buckling loads for symmetric and antisymmetric modes are very close to each other 

for the large mode number m, and the buckling loads for symmetric and antisymmetrical modes 

have the same critical loads. The effect of applied combined loads makes the shell has critical 

loads some 1.5~2.5 times lower than applied compression loads, so that the shell buckles more 

readily and will be less stable for the combined loads. The ratio of critical loads µ takes the 

values within the (1.9 ~ 2.6) range and takes the smallest value 1.9 for the modes of the shell of 

constant thickness whereas the biggest value 2.6 for the shell of variable thickness. The critical 

buckling loads 
Cp  for symmetrical modes occurred with m=5, except for compression load and 

constant thickness occurs with m=4, but for antisymmetrical modes those occurred with m 5= , 

and all for 5=l . Table 2 gives the fundamental buckling loads factor for a circular cylindrical 

shell of variable thickness versus the axial half wave number under the specific loads. As was 

expected that the symmetric and antisymmetric type-modes gives the same values of buckling 

loads factor versus the thickness ratio. It is seen from this table, in the case of applied combined 

axial loads, the shell will buckle more easily with increasing of axial half wave number m 

because of increasing of m results in decreasing of p , whereas for more values of m the shell is 

less stable. In the case of applied compression loads and constant thickness ( 1=η ), the critical 

buckling load occurred for m=1, and an increase of m results in an increase of load factor and the 

shell will buckle hardly for m >1. For m >10 the shell will be more stable because the values of 

buckling load factor increase slightly until  reach their convergence values between (230~231). 

Whereas in the case of combined loads a very fast convergence is observed in the lowest critical 

load value for m ≥17, With an increase of thickness ratio η the buckling loads increase for 

uniform and non-uniform loads, and they are lower values for the shell when the combined loads 

applied. For η  >1, the ratio of critical loads µ is bigger than 2.4. 

 

5.2. BUCKLING DEFORMATIONS   

 

When a structure subjected usually to compression undergoes visibly large displacements 

transverse to the load then it is said to buckle, and for small loads the buckle is elastic since 
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buckling displacements disappear when the loads is removed. Generally, the buckling 

displacements mode is located at the weakest generatrix of the shell where the unsteady axial 

compression )(θp  is a maximum, and the shell has less stiffness. Figures (2) and (3) show the 

fundamental circumferential buckling modes of a three-lobed cross-section cylindrical shell of 

variable thickness under axial loads and combined compression and bending loads corresponding 

to the critical and the buckling loads factor listed in Tables (1) and (2), symmetric and 

antisymmetric type-modes. The thick lines show the composition of the circumferential and 

transverse deflections on the shell surface while the dotted lines show the original shell shape 

before buckling case. The numbers in the parentheses are the axial half wave number 

corresponding to the critical or buckling loads. There are considerable differences between the 

modes of η =1 and η >1 for the symmetric and antisymmetric type of buckling deformations. 

Forη =1, in the case of axial load, the buckling modes are distributed regularly over the shell 

surface, but for η >1, the majority of symmetrical and antisymmetrical buckling modes, the 

displacements at the thinner edge are larger than those at the thicker edge i.e. the buckling modes 

are localized near the weakest lines on the shell surface. Forη =1, in the case of non-uniform 

load, the buckling modes are located at the weakest generatix of the shell, where the axial 

compression load is a maximum in the compressive zone. For η >1, in the case of combined 

loads, the modes of buckling load are concentrated near the weakest generatrix on the shell 

surface in the compressive zone, but the modes of critical load are located at the tensile zone, 

where the axial load is a minimum and the thickness is a maximum. This indicates the possibility 

of a static loss of stability for the shell at values of Bp less than the critical value Cp . It can be 

also opined from these figures that the buckling behavior for the symmetric pattern is 

qualitatively similar to those of antisymmetric mode. Also, it is seen that the mode shapes are 

similar in the sets of the buckling modes having the ratioη  >2 for the applied specific loads. 

Figure 4 shows the circumferential buckling modes of a circular cylindrical shell of variable 

thickness with ( 4=l and 2.0=h ) under the specific loads. It is seen from this figure that the 

buckling deformations for applied uniform compression loads are distributed regularly over the 

shell surface of constant thickness, see Figures (i) and (ii). These figures are in quite good 

agreement with Ref. 5. It can be also seen from this figure that the shell of applied combined 

loads buckles more easily than one of applied compression loads.  

Figure 5 shows the variations in the critical buckling loads of a non-uniformly loaded shell of a 

three lobed cross section and the corresponding values of the half wave number for ( 201 ≤≤ m ) 

versus the radius ration ζ , for the specific values of thickness ratio η.  The axial half wave 

number of corresponding critical buckling loads is shown in this figure as (m). It is seen from this 

figure, for the symmetric and antisymmetric type-modes, an increase in the radius ratio ζ causes 

an increase in the critical loads, and when the foregoing ratio becomes unity the latter quantities 

take the same values and assumed to be for a circular cylindrical shell. It is observed that the 

critical loads increase with an increase in the thickness ratio η where the shell becomes more 

stiffness. Upon increasing the radius ratio, the critical buckling axial half wave number increases. 

The nominal axial half wave number corresponding to the critical buckling load may be in 

general depends on the radius of curvature at the lobed corners of the shell. 
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Tables: 
 

TABLE 1 
The fundamental buckling loads factor p  for symmetric and antisymmetric modes of a loaded cylindrical shell 

Of three lobed cross section with variable thickness, ( 01.0,5,5.0 === hlζ ) 

 
 

444444444 8444444444 76
484764847648476

η

µµ

ModessSymmetric

BABABAm

521

       µ     µµµ

η 4444444444 84444444444 76
484764847648476

ModesricAntisymmet

BABABA

521

  

 
1   52.772  97.410  1.8   94.396  199.27   2.1  253.45  556.14  2.2   61.492   121.64    1.9   107.08   227.01   2.1   279.19    662.074    2.3  
 

2   20.362  38.112  1.8   36.576  78.952   2.1  105.17  251.36  2.4   24.881   48.076    1.9   45.828   95.903   2.1   137.61    314.962    2.3  
 

3   14.977  29.409  1.9   26.613  57.363   2.1  75.369  179.78  2.4   15.916   31.321    1.9   28.718   60.935   2.1   85.536    199.787    2.3  
 

4   13.577  26.904  1.9   23.919  51.713   2.1  67.031  160.50  2.4   13.554   26.963    1.9   24.023   51.785   2.1   68.921    164.199    2.3 
 

5   13.687  27.057  1.9   23.849  52.084   2.1  65.112  157.91  2.4   13.498   27.053    2.0   23.478   51.421   2.1   64.284    156.245    2.4  
 

6   14.753  29.483  1.9   25.281  56.064   2.2  66.251  163.42  2.4   14.603   29.459    2.0   24.853   55.355   2.2   64.676    160.203    2.5 
 

7   16.546  33.448  2.0   27.695  62.532   2.2  69.137  173.47  2.5   16.435   33.397    2.0   27.325   61.943   2.2   67.536    170.173    2.5  
 

8   18.869  38.604  2.0   30.790  70.865   2.3  73.146  186.36  2.5   18.798   38.519    2.0   30.505   70.419   2.3   71.779    183.436    2.5 
 

9   21.628  44.623  2.0   34.404  80.689   2.3  77.980  201.93  2.5   21.594   44.662    2.0   34.198   80.371   2.3   76.912    198.927    2.5  
 

10 24.773  51.703  2.0   38.443  91.770   2.3  83.489  217.80  2.6   24.763   51.737    2.0   38.305   91.553   2.3   82.705    216.058    2.6 
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TABLE 2 

The fundamental buckling loads factor p  for symmetric and antisymmetric 

Modes of a loaded cylindrical shell, ( 01.0,5,1 === hlζ ) 

 

µµµ

η 444444444444 8444444444444 76
484764847648476

ModesricAntisymmetSymmetric

BABABAm

&

521

     

1     292.341     592.423    2.0        379.178      912.032    2.4       652.296      1764.88     2.7 

2     275.907     626.538    2.2        332.602      877.220    2.6       482.997      1354.82     2.8  

3     265.975     641.974    2.4        308.969      838.994    2.7       415.423      1182.45     2.8 

4     259.281     627.514    2.4        293.684      810.150    2.7       377.489      1083.87     2.8 

5     254.345     628.201    2.4        283.038      789.053    2.7       352.558      1018.14     2.8 

6     250.495     636.662    2.5        275.312      773.985    2.8       334.703      970.683     2.9    

7     247.374     635.404    2.5        269.351      762.205    2.8       321.142      934.445     2.9 

8     244.775     631.887    2.5        264.497      752.331    2.8       310.392      905.609     2.9 

9     242.568     628.565    2.5        260.406      743.802    2.8       301.584      881.919     2.9 

10   240.659     622.220    2.5        256.895      736.370    2.8       294.175      861.956     2.9    

 
FIGURES: 

 

 
 

Fig: 1 coordinate system and geometry of a variable axial loaded cylindrical shell of three 

Lobed cross section with circumferential variable thickness 

. 
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Fig: 2 the symmetric buckling deformations of a cylindrical shell of three lobed cross section 

With variable thickness { 01.0,5 == hl } 
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Fig: 3. the antisymmetric buckling deformations of a cylindrical shell of three lobed cross 

Section with variable thickness { 01.0,5 == hl } 
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FIG: 4 THE CIRCUMFERENTIAL BUCKLING MODES OF A CIRCULAR CYLINDRICAL SHELL 

WITH VARIABLE THICKNESS. 
 

 

 

 
 

 
FIG: 5 CRITICAL BUCKLING LOADS VERSUS THICKNESS RATIO OF A THREE-LOBED CROSS-SECTION 

CYLINDRICAL SHELL WITH VARIABLE THICKNESS, ( 02.0,4 == hl ) 
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6.  CONCLUSIONS  

 An approximate analysis for studying the elastic buckling characteristics of 
circumferentially non-uniformly axially loaded cylindrical shell of a three-lobed cross-
section having circumferential varying thickness is presented. The computed results 
presented herein pertain to the buckling loads and the corresponding mode shapes of 
buckling displacements by using the transfer matrix approach. The method is based on 
thin-shell theory and applied to a shell of symmetric and antisymmetric type-mode, and 
the analytic solutions are formulated to overcome the mathematical difficulties 
associated with mode coupling caused by variable shell wall curvature and thickness. 
The fundamental buckling loads and corresponding buckling deformations have been 
presented, and the effects of the thickness ratio of the cross-section and the non-
uniformity of applied load on the critical loads and buckling modes were examined. 
The study showed that the buckling strength for combined loads was lower than that 
under compression loads. The deformations corresponding buckling load are located at 
the compressive zone of a small thickness but, in contrast, the deformations 
corresponding critical load are located at the tensile zone of a large thickness, and this 
indicates the possibility of a static loss of stability for the shell at values of less than the 
critical value CP . Generally, the symmetric and antisymmeric buckling deformations 

take place in the less stiffened zones of the shell surface where the lobes are located. 
However, for the applied specific loads, the critical buckling loads increase with either 
increasing radius ratio or increasing thickness ratio and become larger for a circular 
cylindrical shell.  
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